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FOREWORD

This document is one of sixteen sections that comprise the final
report prepared by the Minneapolis-Honeywell Regulator Company for the
National Aeronautics and Space Administration under contract NASw-563.
The report is issued in the following sixteen sections to facilitate
updating as progress warrants:

1541-TR 1

1541-TR 2

1541-TR 3
1541-TR 4
1541-TR 5

1541-TR 6

1541-TR 7

(@]

1541-TR

1541-TR

\O

- 1541-TR 10

1541-TR 11

1541-TR 12

1541-TR 13

1541-TR 1k

1541-TR 15

1541-TR 16

Summary

Control of Plants Whose Representation Contains Derivatives
~P Vs MmandaanT YW aond ~W T o

O1I Tne€ oLonvrod variaole

Modes of Finite Response Time Control
A Sufficient Condition in Optimal Control
Time Optimal Control of Linear Recurrence Systems

Time-Optimal Bounded Phase Coordinate Control of ILinear
Recurrence Systems

Penalty Functions and Bounded Phase Coordinate Control
Linear Programming and Bounded Phase Coordinate Control
Time Optimal Control with Amplitude and Rate Limited Controls

A Concise Formulation of a Bounded Phase Coordinate Control
Problem as a Problem in the Calculus of Variations

A Note on System Truncation

State Determination for a Flexible Vehicle Without a Mode
Shape Requirement

An Application of the Quadratic Penalty Function Criterion
to the Determination of a Linear Control for a Flexible Vehicle

Minimum Disturbance Effects Control of Linear Systems with
Linear Controllers

An Alternate Derivation and Interpretation of the Drift-Minimum
Principle

A Minimax Control for a Plant Subjected to a Known Load Disturbance

Section 1 (1541-TR 1) provides the motivation for the study efforts
and objectively discusses the significance of the results obtained. The
results of inconclusive and/or unsuccessful investigations are presented.
Linear programming is reviewed in detail adequate for sections 6, 8, and 16.

It is shown in section 2 that the purely formal procedure for synthe-
sizing an optimum bang-bang controller for a plant whose representation
contains derivatives of the control wvariable yields a correct result.
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In section 3 it 1s shown that the problem of controlling m components
(L <m < n), of the state vector for an n-th order linear constant coefficient
plant, to zero in finite time can be reformulated as a problem of controlling
a single component.

Section 4 shows Pontriagin's Maximum Principle is often a sufficient
condition for optimal control of linear plants.

Section 5 develops an algorithm for computing the time optimal control
functions for plants represented by linear recurrence equations. Steering
may be to convex target sets defined by quadratic forms.

In section 6 it is shown that linear inequality phase constraints
can be transformed into similar constraints on the control variables.
Methods for finding controls are discussed.

Existence of and approximations to optimal bounded phase coordinate
controls by use of penalty functions are discussed in section T.

In section 8 a maximum principle is proven for time-optimal control
with bounded phase constraints. An existence theorem is proven. The
problem solution is reduced to linear programming.

A backing-out-of-the-origin procedure for obtaining trajectories for
time-optimal control with amplitude and rate limited control variables is
presented in section 9.

Section 10 presents a reformulation of a time-optimal bounded phase

coordinate problem into a standard calculus of variations problem.

A mathematical method for assessing the approximation of a system by
a lower order representation is presented in section 11.

Section 12 presents a method for determination of the state of a
flexible vehicle that does not require mode shape information.

The quadratic penalty function criterion is applied in section 15 to
develop a linear control law for a flexible rocket booster.

In section 14 a method for feedback control synthesis for minimum load
disturbance effects is derived. Examples are presented.

Section 15 shows that a linear fixed gain controller for a linear
constant coefficient plant may yleld a certain type of invariance to
disturbances. Conditions for obtaining such invariance are derived using
the concept of complete controllability. The drift minimum condition is
obtained as a specific example.

In section 16 linear programming is used to determine a control function
that minimizes the effects of a known load disturbance.
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ROCKET BOOSTER CONTROL SUMMARY
ABSTRACT

The automatic control research performed by Honeywell for

NASA under contract NASw-563 is put into perspective by supplying

motivation and indicating the significance of the results obtained,

The efforts-yielded:

an algorithm suitable for on=-line computation of bounded
control amplitude time-optimal controls; the target can be

a point set described by a positive definite quadratic form,

a good method for designing bounded control amplitude and

amplitude rate time optimal controls for low order systems,

procedures for developing bounded phase coordinate, time-

optimal controllers,

a method for measurement of the state for flexible vehicles

that does not require mode shape information,

a method for accurately approximating linear state controllers
for flexible vehicles that requires sensors lesser in number

than the order of the plant representation,

a general design method for linear controllers that minimize

the effects of load disturbances,

selectively invariant load disturbance controller design

procedures, and

a method for determination of open loop controllers that

minimize the effects of known load disturbances.




Some theoretical results were also obtailned; namely:

° a demonstration that formal procedufes for eliminating

derivatives of control variables ylelds correct results,

® the development of canonical modes of finite response time:

contrel was carried out using preperties cof complete

controllability,
° a general sufficiency condition for optimal control,

o many results yielding facets for understanding the bounded

phase coordinate control problem, and

° an analytical method for assessing the effects of controller

design based on a low order plant model,

-

SUMMARTES ~ ) 5/20 ‘/

This discussion separates the efforts into three categories:
initial condition control, measurement (of the state vector),
and load disturbance control. The efforts in each of the
categories are related and then a summary of each effort 1s
provided.

Two appendices are included. Appendix A provides a review
of linear programming. Initial consilderations leading toward

solutions of the load disturbance control problem are presented

in Appendix B. A gt 22—



INITIAL CONDITION CONTROL

Initial condition control is concerned with determining
how to operate the control variables so that initial system errors
are driven toward zero according to a prescribed criterion,

Three theoretical questions were investigated, an algorithm to
permit on-line computation of optimal controls was developed,
and a number of results for the bounded phase coordinate control
problem were obtained.

Mathematical representations for plants quite often naturally
contain terms involving derivatives of control variables. With
these representations, step changes in the amplitudes of the
control variables would require consideration of impulse functions
(and ﬁerhaps their derivatives). To avoid these difficulties it
is common practice (reference 1) to formally perform a trans-

formation that results in a plant representation in which

“derivatives of the control variable do not appeér, Two questions

naturally ariéez Do the formal transformations yield generally

valid results? Could control synthesis be better accomplished

within the original representation? Section 2 shows the

answer to the first questlon 1s yes and indlcates the answer

to the second is probably not. |
The presentation of the modes of finite response time

control problem (reference 2) in Section 3 uses the condition

of complete controllability to replace a number of special re-

quirements in the original derivation.

Section 4 shows Pontriagin's Maximum Principle is often a
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sufficient condition for optimal control.

An algorithm for determining the controls thaﬁ minimize
the response time between a prescribed point and a prescribed
convex target set is presented in Section 5.

Sections 6, 7, 8, 9 and 10 present different attacks on
the bounded phase coordinate control problem. An -algorithm
capable of computing time-optimal, bounded-phase coordinate,
two=point boundary value problem trajectories is presented in
Section 6; the computer requirements for realizing éhe controls
are demanding. A similar algorithm is presented in Section 8;
this algorithm is simpler but can only compute optlmal trajectories
by the backing out of the origin process. The special bounded
phase coordinate problem wherein the constraints are on the
control amplitudes and their derivatives 1s considered in Section 9.
A general procedure for backing out of the origin is developed
which permits explicit controller design for low order systems,
Section 7 considers the existence of solutions to the bounded
phase coordinate control problem by use of penalty functions. A
reformulation of a bounded phase coordinate problem into an
ordinary problem in the calculus of variations 1s presented in
Section 10.

Summaries for Sections 2 through 10 are now presented.

Control Of Plants Whose Representation Contains Derivatives Of

The Control Variable Section 2 contains a discussion of problems

of control for which the right sides of the plant equations contain

derivatives of the control functions. It is a problem of



=5=

interest to consider such systems under circumstances in which

the controls have discontinuities of the first kind. This re-
quires treating control system equations in which impulse control
inputs represented by the derivatives arise. Up to the present time,
such systems have been treated by purely formal procedures such as
Laning's and Battin's method (reference 1) for eliminating the
control defivatives by performing a sultable coordinate trans-
formation. The question naturally arises as to whether such .
formal procedures yield valid results. Further, if a direct method
for treating the control systems while allowing the derivatives of
the controls to remain were available,‘how would the two methods -
direct and formal, compare? The contents of Section 2 include

the results of a theoretical investigation of the aforementioned
direct approach and an example showing how these results can be
compared with the results obtained by treating the same system
formally.

Modes Of Finite Response Time Control Section 3 considers a linear

autonomous system with a single control variable. There are, 1in
general, several modes of finite response time control for such

a system, The concepts of single component regulation and
multiple component regulatlion are defined. For completely
controllable systems it is shown that multiple component regulation
problems can be transformed into single component regulation
problems, Thus 1t is possible to express any of the modes of

control considered as control of a single input, single output system.,

A Sufficient Condition In Optimal Control The maximum principle
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of L. S. Pontriagin and his students is_a'necessary condition
for optimum controls. In many cases this condition is also
sufficient. It is shown in Section 4 that in those cases where
the system model is linear in the state variables and the cost
functional 1s convex in the state variables this condition is
sufficient. The control function may enter in an arbitrary way,
but it is assumed that i1t is bounded in some manner. Use of the

condition may require complex calculations.

Time Optimal Control Of Linear Recurrence Systems An algorithm

1s developed in Section 5 to compute the time-optimal control
functions for plants represented by linear recurrence equations.

Steering may be to convex sets defined by quadratic forms.

Time~-Optimal Bounded Phase Coordinate Control Of Linear

Recurrence Systems Section 6 considers the time-optimal control

problem with bounded phase coordinates for systems modeled by
linear recurrence equations. It is shown that linear inequality
constraints of the phase coordinates can be transformed into
similar linear inequality constraints on the control variables.

The methods for finding the so constrained minimum are discussed.

A convergent computational scheme is presented, which, unfortunately,

involves a large amount of equipment for implementation. It does
not seem practical to solve this problem on line using present

computer technology.

Penalty Functions And Bounded Phase Coordinate Control Section 7

considers the use of two different kinds of penalty functions to

e,
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obtain approximate and exact solutlions to the bounded phase
coordinate optimal control problem,

Existence of approximate solutions is established for the
cases where the penalty functions are added to the integrand of
the performance cost functional. The penalty functions are non-
negative, have small values for points well within the phase
constraints, but increase rapidly for points near the boundaries
of the constraint set.

Optimal solutions obeying the phase constraints are shown,
under fairly general hypotheses, to be obtalnable by using
sequences of penalty functions that converge uniformly to zero
on compact sets within the phase constraints and converge
uniformly to infinity in compact sets exterior to the phase

constraints.

Linear Programming And Bounded Phase Coordinate Control A

maximum principle for time-optimal bounded phase coordinate
control of ordinary linear differential equation systems and an
exlstence theorem are proven in Section 8. Plant differential
equations are then approximated by recurrence equations so the
problem of obtaining "optimal" trajectories by backing out of
the origin can be reduced to one of linear programming.

The maximum principle permits determination of explicit
closed loop control laws for low order systems,

The numerical procedures permit computation of a dense
family of "optimal" trajectories through the region of phase space

that is of interest for a particular problem, These trajectory
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data could be stored to provide for closed loop control

Time Optimal Control With Amplitude And Rate Limited Controls

Necessary conditions leading to a method for determination of
bounded control amplitude and amplitude rate time optimal control
trajectories by backing out of the origin are developed in Section
9. The backing out procedure requires choosing the response time,
the unaugmented system adjoint vector at the response time, the
rate limited control variable amplitudes at the response time,
and the rate limited control varliable amplitudes at the initilal
time. A set of consistency conditlions on the control variables are
then used to determine the allowable control variable trajectories
from a finite set of possibilities. The state trajectories in-
cluding the state at the initial condition can be determined in
the usual manner from the control variable trajectories.

The procedures permit computation of a dense family of
optimal trajectories through the region of phase space that 1s of
interest for a particular problém, These trajectory data could

be stored to provide closed loop control.

A Concise Formulation Of A Bounded Phase Coordinate Control

Problem As A Problem In The Calculus Of Variations A short

calculation 1s presented in Section 10 which transforms a bounded
phase coordinate control problem into a problem in the calculus
of variations. The transformation permits application of the
theory and computational methods of variational calculus to the

problem of bounded phase coordinate control.



MEASUREMENT

Feedback control implies that variables appearing in the
control law be measured. Sections 11, 12, and 13 consider three
particular questions regarding measurement problems that arise in
applying state control theories to the design of controllers for
flexible vehicles, Section 11 provides a method for assessing
the errors incurred by controller designs that neglect minor
dynamics. If a finite number of flexure modes adequately re-
present a flexible vehicle, the state can be measured without
knowing mode shapes by the method presented in Sectlon 12,
Section 13 indicates the number of flexure modes required to model
a flexible launch booster is small and applies an existing control
syntheslis technique to determine the number.

Summaries of Sections 11, 12, and 13 are now presented.

A Note On System Truncation The problem of control design of

high order systems based on the characteristics of the lower order
essentlal elements of the system is considered in Section 11 by
approximation of asymptotic, sometimes called singular perturbation,
type. A preliminary general development 1s given and detail
calculations for a simple problem are written out. These results
indicate that the technique leads to the same design found by
previous investigators and the only advantage appears to be an

estimate of errors.

State Determination For A Flexible Vehicle Without A Mode Shape

Requirement If the number of flexure modes required to represent

a flexible vehicle 1is finite, the vehicle dynamics may be.
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represented by a finite number of first order, ordinary differential
equations, It 1s assumed that n first order equations satisfactorily
represent the vehicle dynamics; it is further assumed the
coefficients in the equations are known. It is shown that if n
different sensors are placed at different (but unknown) positions
on the vehlcle, the state vector can be determined by processing
the outputs of the sensors with a least squares filter.

This method would thus provide a reasonable means for
measuring the state ofva flexible vehicle i1f the number of flexure
modes were small, The next section (13) indicates the number of

flexure modes is small.

An Application Of The Quadratic Penalty Function Criterion To The

Determination Of A Linear Control For A Flexible Vehicle In

Section 13 linear controllers are designed for a typical five-engine
flexible rocket booster by use of the quadratic penalty function
criterion. The results show the optimal control can be satisfactorily

approximated using 6 sensors.

LOAD DISTURBANCE CONTROL

Load disturbance control is concerned with determining how
the control variables should be driven to minimize the effects of
load disturbances. Sections 14, 15, and 16 develop syhthesis
methods to minimize motions due to unknown but bounded disturbances,
present a method for preventing motion of certain components of
the system state, and develop a method for minimizing motions due
to known disturbances.

Summaries of Sections 14, 15, and 16 are now presented.
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Minimum Disturbance Effects Control Of Linear Systems With

Linear Controllers An optimal control problem for linear systems

is considered in Section 14. The optimal controller is one’

from a class'of allowable controllers that minimizes the effect of
the worst possible disturbance from the class:of uniformly bounded
dlsturbances. When the class of allowable controllers is a

family of fixed-gain controllers a method of solution is presented.
For sufficliently simple systems the optimal controller may be

found by analytical techniques. However, for most realistic systems
the use of a computer 1s required to determine the optimal
controller.,

As examples, two second order systems are discussed with the
optimal controllers being obtained analytlically, and a fourth order
system is discussed which corresponds to the rigid body representation
of a launch booster. This example required the use of a computer
to obtain an approximation to the optimal controller. Some
discussion of the computation time and computer results is given,

The examples lllustrate that a method for the straight forward

design of load disturbance controllers has been developed.

An Alternate Derivatlion And Interpretation Of The Drift-Minimum

Pfinciple The design of a control system for a plant with

" disturbance inputs 1s considered in Section 15. The motion of the

plant 1s assumed to be described by n linear, first-order constant-
coefficient differential equations forced with a scalar control
variable and a scalar disturbance. A linear, fixed-gain controller

is assumed. In some cases it is possible to choose the gains in
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such a manner that a certain type of invariance to disturbances is
obtained for the resulting controlled system. Conditions for
obtaining such invariance are derived ﬁsing the concept of complete
controllability. The Drift-Minimum condition 1s obtained as a

specific example,

A Minimax Control For A Plant Subjected To A Known Load

Disturbance An open-loop optimal control problem is considered in
Section 16 for plants that can be represénted by linear recurrence
equations. It is assumed that the control is bounded and that a
known disturbance is present. Then the problem is to choose a
control sequence that minimizes an error criterion based on a
generalized distance function.

The problem is formulated in a manner such that linear
programming techniqﬁes can be used to give the optimal control
sequence., Estimates on the size of the resulting linear programming
problem are presented.

A method is cited for determining an optimal control sequence
as a result of varying a nominal disturbance provided the optimal
control is known for the nominal case.

An example 18 presented to 1lllustrate the techniques involved.

The method provides a means for designing open loop controllers
that are important in their own right. In addition it provides
for determining the effectiveness of closed loop load disturbance

controls (such as might be designed by the method of Section 14),
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APPENDIX A

A REVIEW OF LINEAR PROGRAMMING TECHNIQUES*

By H. E. Gollwitzer

ABSTRACT
The fundamental concepts of linear programming are intro-
duced and the simplex method of computation 1s briefly discussed.
An application of linear programming called parametric linear

programming is introduced and briefly developed.

INTRODUCTION

Linear programming is concerned with a speclal class of
maximum and mihimum problems. A linear programming problem, in
general, is that of maximizing or minimizing a glven linear com-
bination of variables subject to a set of linear constraints on
these variables. The theory of linear programming glves general
results for the existence of optimizing solutions and involved the
study of linear inequalities.

The most common method for computing solutions to a linear
programming problem is called the simplex method. The simplex
method is a computational algorithm which leads to a solution of
a lineaf programming problem in a finite number of iterations.
The hypotheses under which the simplex method works are falrly
general. The method 1s used almost exclusively in solving linear

programming problems.
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* Prepared under contract NASw-563 for the NASA.

i Research Engineer, Minneapolis-Honeywell Regulator Company,
Minneapolis, Minnesota.



In the following paragraphs the linear programming problem
is briefly developed, the simplex method outlined, and a concept

called parametric linear programming introduced.

LINEAR PROGRAMMING

The llnear programming problem is defined and the necessary
notation developed.
DEFINITIONS

The standard linear programming problem is that of finding
nonnegative numbers Ei,i=l,...,m which either maximize or minimize
the given linear combination |
m
iflﬁivi (1)
subject to the set of linear constants

m
121 Eiaij LBy 3 =1,...n. (2)

The linear combination to be maximized or minimized is called the
objective function. The term "linear program" is used to denote
a linear programming problem when no reference is necessary as to
the exact type of problem under consideration. Nonnegatiye
numbers’ ﬁi, i=1,...,m which satisfy the constraint conditions
are called a feasible solution of the linear program.' A feasible
solution which maximizes or minimizes the objective function is
called an optimal solution. The result of evaluating the obJjective
function with an optimal solution is called the value of the
linear program.

A fundamental fact about linear programming is that to every
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linear program there corresponds another linear program called the
dual program. These two programs are closely related and many of
the central results in the theory of linear programming are con-
cerned with the relationships between a linear program and its dual.
The following example is given to illustrate the manner in which a
linear program i1s related to its dual. The standard maximum
program 1s that of finding nonnegative numbers 51’ i=1,.,..,m
such that

m
s ﬁiyi is a maximum
=1

subjJect to : (3)

m
iil €iaiJ'<-BJ ’ J=-1,...,n.

The dual program is to find numbers qJ:Such that
n

Z n.b is a minimum

g=1 94

subject to . (4)
n

1il‘njaij~l‘yi s 1 =1,...,m,
where the numbers nj are unrestricted in sign.

VECTOR AND MATRIX THEORY

The form of linear programming problems leads to the short-
hand of vector and matrix notation. If A 1s an mxn matrix, then
A' denotes thevtfanspose of A. Vectors will be considered as row
vectors and an n-vector x will denote the n-tuple (xl,...,xn).
A vector x is nonnegatlve if and only if each of its components are
nonnegative. The inner product of two n-vectors x and y is denoted

as Xxy. In vector and matrix notation the standard maximum problem
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and its dual are formulated as follows: Given an mxn matrix A,
an n-vector b, and an m-vector ¢, find a nonnegative vector x
such that
Xxc is a maximum
subject to (5)
XA =D
and the dual problem is that of finding an n-vector y such that
yb is a minimum
subject to (6)
Ay > ¢
ILet M = {i,...,m} denote the set of positive integers from
1l tom, Let al,...,am be m-vectors and let S be a subset of M.
A solution x = {El,..., m} of the equation
m
iilﬁiai =D (7)
is sald to depend on the set S if §, = O for 1 ¢ S. A solution
of (7) is called a basic solution 1f it depends on a set 8§ such
that the m-vectors a; are linearly independent for i € S. A

basic nonnegative solution is defined similarily.

THE CANONICAL PROBLEM

One type of linear program which 1s quite useful 1n connection
with the simplex method is that in which the unknown vector is non-
negative and the constraints are equations. The type of problem
i1s called the canonical problem. The canonical minimum problem

is given as follows:

Given an mxn matrix A, an n-vector b, and an m-vector ¢, find a



nonnegative vector x such that
Xe is a minimum

subject to (8)
xA = b,

The canonical maximum problem is similarily defined.

The canonical program and the standard program are equivalent
in the sense that either problem can be transformed in the other.
For example, the canonical maximum program is that of finding a
nonnegative vector x such that |

xc is a maximum
subject to
xA = b.
The equivalent standard program 1s that of finding a nonnegative
vector x such that |
Xc is a maximum
subject to

xA <D

|

-xA < -Db,

The standard maximum program is that of finding a nonnegative
vector x such that .
Xc is a maximum

subject to
xA < b.
This is transformed into a canonical program by adjoining one

new nonnegatlve varlable to each constraint so that equality is
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always preserved. In matrix notation the problem 1ls to find a

nonnegative vector x such that

xe is a maximum

subject to

xA+zI =10

where I is the mxm identity matrix and z is a nonnegative m-vector,
The components of z are sometimes called slack varlables. The
components of z do not enter into the objective function and serve
only to preserve equality in each of the constralnts. Finally,

it is noted that any maximum problem can be treated as a minimum
problem by negating the objective function, and conversely.

The followlng example will indicate how a falrly general
linear program can be put into canonical minimum form. This will
be done in three main steps. Find numbers 51’ 62, €3 that maximize
8€1 + 19€2 + 7€3 subject to

36, + b, + &5 < 25

§, + 38, + 385 < 50 (9)

\%
O

@1- €2+ &3_

The first step i1s to get all varilables expressed as the difference
of two nonnegative variables. The next step is to negate the

objective function so that a minimum problem can be consildered.

Let El =Xy = Xp, &2 = X3 - Xy, 63 = %5 - Xg.
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With these two steps carried out the problem now reads;
Find nonnegative numbers x,, 1 = 1l,...,6
such that

-8x1 + 8x2 - l9x3 + 19x) - 7x5 + TXg

is a minimum subject to

3%, = 3%, + 4x, - Ux, + X- - xg <25
4 « S v 2 Yo

X; = X + 3x3 - 3xu + 3x5 - 3x6 £ 50

-X; t %, 4 X3 = X - Xg + X <0

The third step is to add the nonnegative slack variables
XT’XB’X9 so that the final canonical minimum problem is to find

nonnegative variables Xy 1=1,...,9 such that

O, + 8. - 19u, + 19x,, - TX- + 7Xs 1s a maximum subject to
1 = 3 4 5 6

3xl - 3%, +’4X3 - &xu + Xg = Xg * Xg = 25
Xy = x2 + 3x3 - 3xu + 3x5 - 3x6 + Xq = 50
-xl + x2 + x3 - xu - x5 + X6 + x9 = 0

If a solution for this problem is obtalined, the resulting xi's will
permit determination of the optimal Ei's in (9).

THE SIMPLEX METHOD
The simplex method is an iterative procedure for finding an
optimal solution to a linear program if one exists. The basic
algorithm involves lengthy arithmetic calculations at each
iteration so it was not until the advent of large, high-speed
digital computers that large linear programs could be solved.

The simplex method 1s designed around the canonical minimum
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or maximum problem and thus it may be necessary to transform the
given problem into a canonical form, The problem is to find a
nonnegative vector x such that

xe is a minimum (10)
subject to

Ax = b

~~
~—

where x is an n-vector, ¢ an n-vector, b an m-vector and A
an mxn matrix. If the equation (11) is considered as a vector
identity, then the problem is to find a nonnegative vector
X = (xl,...,xn) such that
xc is a minimum
subject to

n
2 xa =D (12)

where at = (ali’ aei""’ami) and 2y is the ijth component of A.
In a canonical program an optimal vector X is called a basic
optimal vector if it is a basic solution of the constraint equation
Ay = b. From the theory of linear programming, if a canonical
linear program has an optimal vector, it has a basic optimal vector.
This necessary condition yields a proof that a canonical linear
program can be solved in a finite number of steps. The proof
follows because there are only a finite number of basic solutlons
to (12) and hence certainly a finite number of nonnegative basic
solutions. 1t would be time consuming to check every possible
basic solution in order to find the nonnegative basic solutlon that
optimizes the linear program. The simplex method glves an orderly

method for searching for the basic optimal vector. The maln idea




-G

18 to first find a nonnegative basic solution of (11) and to then
find another nonnegative basic solution that reduces the value

of the objective function. The purpose of this is to elimiﬁate
the testing of nonnegative basic solutions that do not decrease
the value of the objective function. Since there are only a
finite number of nonnegative basic solutions, this search will
eventually find the optimal basic solution if it exists.

There is also the question of whether this process always
works. In some cases the simplex method may fail to give an
optimal solution. These cases are called degenerate. Degeneracy
occurs when the simplex algorithm becomes ambiguous to use. There
are methods for handling degenerate cases so that an optimal
solution can be found (reference 1).

In the discussions of the simplex method the assumption was
made that a nonnegatlve basic solution was known. This initial
nonnegative basic solution can be found in the following manner,
The original problem was to find a nonnegarive n-vector x such
that

xe is a minimum (10)
subject to

Ax = D, (11)
The vector b is assumed to be nonnegative, and can be accomplished
by changing the signs of the necessary equations. Let
c=(1,1,...,1) be an m vector and let y be a nonnegative m vector.
The problem of finding a nonnegative basic solution of (11) is

that of finding nonnegative vectors x and y such that
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ye 18 a minimum (13)
subject to

AX +yI =0 (14)
where I is the identity matrix. A theorem in linear
program states that Ax = b has a nonnegative basic solution if
and only if the value of (13) is zero. This gives the initial
nonnegative basic vector, and hence it is necessary to solve a
linear program to get an initial nonnegative basic vector. It
is then necessary to obtalin an initial nonnegative basic vector
to start the solution of (13), (14). This is accomplished by
setting x = 0O and y = b, which is a nonnegatlive basic vector
since b was nonnegative. If the minimum value of (13) is not zero
then the original program does not have a nonnegative basic
solution and hence no optimal solution. This affords a quick check
on the solvability of a linear program. This concludes the

discusslion of the simplex method.

PARAMETRIC LINEAR PROGRAMMING

The method of parametric linear programming is a technlque
that permits the computation of new optimal solutions, as a re-
sult of changes in the data, withouf solving the entire linear
program again. This is best illustrated by considering the
following standard canonical minimum problem: Find nonnegative
numbers Xy i=1,...,n that

ex is a minimum (15)

subject to
Ax = b, (16)
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It is of interest to investigate the changes in an optimal
solution if say, the components of the vector b are changed in a
prescribed manner. It would be advantageous to have a method
that would give changes in the optimal solution as a function of
changes in the components of b without solving another linear
program. This is a consequence of the large amount of effort
needed to solve linear programs. Parametric linear programming
1s one such method.
Let

£' = (Ei,...,iﬁ) (17)
be an optimal solution to (16). The solution will depend on m
linearly independent column vectors, and the remaining ﬁj will be
zero, Assume for convenience that the solution depends on the
first m column vectors in (16). This is sufficient because any
other arrangement can be relabeled to give this form. Then

§' = (&,...,8!, 0,...,0). The equation (15) will appear as

?116]{ + o 6 & 00 + a b

1
m

lm6 1
: : : (18)
1 =
apq18] + ..o ta €0 =Dy

where the 2y 4 in (18) can be different from the 2y 4 in (16)
because of relabeling. Letting I' = (yij) be the matrix of
coefficients in (18), and & = (ii,...,&é), it can be written as

r¢ =b . (19)
Since the columns of I' are linearly independent I' is non-singular
and € = P"lb, where P”l denotes the inverse of I'. The optimal

solution £ can then be expressed as
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m

"2 PPy P Leem (20)

&

where Bij is the 1j element of I"1,

Equation (20) expresses the optimal solution in terms of the
known vector b and the matrix I', Since the solution is optimal,
ﬁi 20,1=1,...,m, and as long as this condition holds the
solution will remain optimal with respect to the chosen basis
(reference 2). Let the bJ be allowed to vary by an amount pJG,
where 6 1s a continuous variable, 6 > O and pj a given constant.
Define bJe = bJ + pje, J=1,...,m. The solution € will remain
feasible and hence optimal with respect to the chosen basis if

m
-
e T B PPy 20, 1=1,m, (21)
where ei 1s the value of the 4th component of the optimal
e .

solution when the components of b are varied. Now if

m

= pJBiJ >0, 1=1,...,m, the solution is termed "open", as
J=1

6 can be extended to any positive value and the program will
m

remain feasible and hence optimal. But if X p
J=1

some 1, then if 6 1s allowed to exceed a certain value emax’ the

JBiJ < 0 for
solution i1s no longer feasible and hence not optimal. This
maximum value can be determined if the solution is not "open"

from the constraint (21). This value of Gm x is given by

n a
z Bi b
= J7J
Onax = min lﬁl-_——__ (22)
Z B
|J=1 inJ'
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m
where A = {i |J§1513p3 < O}, The value of amax ls determined by

letting equality hold in (21) for i € A, Since there is some i
for which this maximum occurs, 1f 6 1s increased by €, € > 0, the
variable &i wlll go negative, Thus if it i1s desired to increase

6 beyond 6 s 51 must be replaced by some varilable not yet in

max
the present basis. This replacement process wlll not be given but
1s explained in reference 2.

In conclusion, if an optimal solution is known then certain
changes in the statement of the problem can be adequately handled

without solving an entirely new problem,

CONCLUSIONS
The concept of linear programming has been introduced, and
the philosophy of the simplex method briefly explained. The
technique of parametric linear programming has been lntroduced

and briefly developed,
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APPENDIX B
CONSIDERATIONS IN LOAD
DISTURBANCE CONTROL
By C. A. Harvey

Two initlal results are presented which were obtained in
attempts to galn some understanding of the following optimal control
problem. Suppose that the system 1s represented by the vector
differentlal equatilon

X=Ax +Bu+Dg, x(0) =0, O0<t<T<o (1)

where x is an n-vector representing the state of the system,

u is an m-vector representing the control variables,

g is an r-vector representing a disturbance, and

A, B, and D are continuous matrices of appropriate size.
The vector g is assumed to be a member of some prescribed class of
disturbances G. Also, it 1s assumed that the control u is a.member
of a specified allowable class of controls U. The optimlzation
problem is then to find a control u in the class U that minimlzes
C(u) when C(u) is defined by

C(u) = max max max |x,(t;u,8)]
1<1<n geG OLELT :

where xi(t;u,g) represents the 1 th

component of the solution to (1).
The first result deals with the uniqueness of optimal controls.

If the class;, G, doés not contain disturbances with enough

variations then the optimal control is not unique., A very trivial

example is that which occurs when G is empty; then any control



u(x,t) with u(0,t) = O is optimal, A somewhat less trivial example

is the following: Let the system represented in the form (1) be
o 1 0 0

0 0 1 1|
number and take G = {g(t):g(t) =c, 0t LT, Jel 2} and take

given by A = ; B = » D= Let T be any positive real

U to be all measurable functions of xq and X5 that satisfy the
inequality, iu(xl,xz)l < 1, In this case u(xl,xe) = Sgn f(xl,xg)
is optimal for any f(xl,xe) that satisfies the conditions

£(0,0) = 0
> 0Oand x, > O

1 2

f(xl,xg) < 0 when x; < 0 and x, < 0

f(xl,x2) > 0 when x

The other result concerns a conjJecture that the optimal
control may be obtained as an optimal control for some initial
condition problem. Two problem statements are introduced to make

possible a preclise statement of the conjecture.

Pl: Consider the system x = AX + bu where x is an n-vector, the
system state, u is a scalar, the control and A is an nxn matrix,
b an n-vector. Let x(t; x_,u) denote the solution to the system
with initial conditions x(0) = X and control u. The problem then
is to find u(x) satisfying certain restrictions such that

max [ max ( max lxi(t;xo,u)l)] is a minimum

1<i<n  x efl OL<T*
where §) 1s some subset of the Euclidean n-space and T* > O

(possibly infinite).

P,: Consider the system‘i = AX + bu + g(t); where g(t) is an

n-vector belonging to a class G; x, u, A, aﬁd b are as in Plo The
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problem is to find u(x) satisfying the same restrictions as in Py
such that

max [ max ( max | xi(t O,u,g)l)] is a minimum
g(t)eG ii<n OLtLT

where x(t;0,u,g) denotes the solution of X = AX + bu + g with

x(0) = O,

The conjecture is that a solutlion to Pl is a solution to P2° This
conjecture is really quite vague 1in the sense that the set £ in Pl
is not completely defined'and that T* in Pliis not cqmpletely

'~ specified. These would have to be related to T and G in the

statement of P2.
The following example 1s presented as a partial result

0 1
u(x) be of the form xl(cos o) + x2(s h 6) with the parameter 6

concerning the conjecture. Let A = 0 _?], b = 0 and let
0

being in the interval [0,27). Then the problem related to Pl is:
Pﬁ: with & chosen to be a closed circular disc and T* chosen to
be infinite, find 6 ¢ [0,2n) such that

Jl(e) = max (max[max le(t X ,aa)l, maxlx (t; X, ,2a)ll)

xoeﬂ t>0 t>0

is a minimum where @ = {(x,y):x2+y2 < Ral and u = xl(cose)-*-xg(sine)°

The problem related to P2 is:
P%: Find 6 €[0,2m) such that

J.(0) = max(max[ max Ix (t;0,u,g) ], max |x,{(t;0,u
277 geG  O<ELT. ’ ’ospgm' 2{#50,w.8) 1)

is a minimum where T is a sufficiently large positive real number,
u = xl(cose) + xe(sin 0), and G ={g(t):g(t)=c,lc|532}.

It is possible to solve P§ to find the optimal 6, say 6°,
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lpe

The value of 6° is approximately 209.4° and J2(2O9.4°) is
approximately 1.635 K2, To show this it may be established that for
any 6 satisfying 0 < & < m or 3n/2 £ 6 < 27 the solution corresppnding
to g(t) = K2 on the interval [0,00) is unbounded. Hence for T
sufficiently large J2(9) > 2K2 if 6 satisfies 0 < 6 < m or

3n/2 £ @ < 2r. Let 90 be in the interval (ﬂ,3n/2) and satisfy the

0

equation cos 6 2 - V5. For any 6 satisfying 60 <6< 3n/2 the

)
first component of the solution corresponding to g(t) = K® approaches
K2 (-cos 9)'1 as t approaches infinity. But X2 (-cos 9)'1 > 4K2

for 6 < 6 < 3ﬂ/2 and hence J2(6) > 2K2 if T is sufficiently large.

For 6 in the interval [m,6_ ) it is possible to obtain as T

o)
approaches infinity that

J2(6) = K2 (-cos 9)'1{1 + exp [a(e)n/ﬁ(e)]}

where a = % sin 6 and B(8) = %~/-81n29-40089. This expression
assumes an absolute minimum for 6 = 9°. For T sufficiently large,
6° will also minimize J2(6).

Now for the problem P¥, this value of 6° 1is not optimal, 1In

fact, there is no value of 6 in the interval (m,6_) which is

o)
optimal for P¥. Thus the problem P{ is not equivalent to P%.

It is possible that choosing a different § for the problem fl

may lead to a problem which has the same solution as Pg.




